On sphere packing problems, in particular on kissing numbers

07.11.2016  14:04
主  讲  人  : Eiichi Bannai(坂内英一)        教授

活动时间: 11月10日10时00分       

地            点  : 理科群1号楼D-203室

讲座内容:

The kissing number problem is the following problem. For a given unit sphere in n-dimensional Euclidean space , how many unit spheres one can put in such a way that the outside spheres touch the given sphere and they do not overlap each other. The maximum number of such outside spheres is called the kissing number k(n) in n-dimensional Euclidean space. We consider the problem of determining k(n) for n>3. We survey the history of this famous problem, and discuss what is known and what is not known at the present time. This is a talk for the general audience.

主讲人介绍:

Eiichi Bannai(坂内英一),国际著名代数组合学家,现为上海交通大学讲席教授,曾为美国俄亥俄州立大学全职教授,日本九州大学全职教授;国际上代数组合第一部专著《结合方案》的作者,多个国际数学杂志的主编或编委,多次应邀在国际数学会议上作大会报告,曾获日本数学会代数奖。

发布时间:2016-11-07 10:05:02