The total domination number and the annihilation number of quasi-trees and composite graphs
活动时间: 11月05日16时00分
地 点 : 腾讯会议854 825 247
讲座内容:
Thetotal domination number $\gamma_{t}(G)$ of a graph $G$ is the cardinality of asmallest vertex subset $D $ of $V(G)$ such that each vertex of $G$ has at leastone neighbor in $D$. The annihilation number $a(G)$ of $G$ is the largestinteger $k$ such that there exist $k$ different vertices in $G$ with degree sumof at most the size of $G$. It is conjectured by W. J. Desormeaux et al. that$\gamma_{t}(G)\leq a(G)+1$ holds for every nontrivial connected graph $G$. Theconjecture has been proved for graphs with minimum degree at least 3, trees,tree-like graphs, block graphs and cacti. In this talk, we introduce some ofour results on the above conjecture.
主讲人介绍:
华洪波,博士,博士后,淮阴工学院教授,硕士生导师,校学术委员会委员,数学学科负责人。先后被遴选为江苏省“青蓝工程”优秀青年骨干教师培养对象, 淮安市“533”人才工程拔尖人才培养对象及江苏省“青蓝工程”中青年学术带头人培养对象。目前担任中国工业与应用数学学会图论组合及应用专业委员会委员。先后主持国家自然科学基金面上项目2项,主持完成江苏省高校自然科学基金面上项目及中国博士后科学基金面上项目各1项,参与完成国家自然科学基金2项及省基金1项。迄今为止,共发表SCI论文60余篇。
发布时间:2021-11-04 14:36:27