现代枚举代数几何的新进展

15.10.2015  09:22
主  讲  人  : 蒋云峰        博士

活动时间: 10月16日14时30分       

地            点  : 理科群1号楼D-203室

讲座内容:

枚举代数几何中的主要问题是空间中代数曲线个数的计算,这里的代数曲线就是几何拓扑中的黎曼曲面。近代理论物理中弦理论的研究提出了一种新的不变量,即Gromov-Witten 不变量,用于计算代数曲线的个数,由此给这个古老课题赋予了新的生命力。 Gromov-Witten 不变量与从物理规范场定义的Donaldson-Thomas不变量有着密切的关系,这些不变量都是现代几何物理研究的中心。我们将介绍这些不变量及其相关研究的主要问题和最新进展。

主讲人介绍:

蒋云峰博士,河北师范大学硕士毕业。2007年在加拿大英属哥伦比亚大学博士毕业后,在美国尤他大学和英国帝国理工学院从事博士后研究。现就职于美国堪萨斯大学数学系。主要从事代数几何和数学物理的研究。

发布时间:2015-10-15 08:52:36