Dirac型算子的L2理论与特征值估计

04.04.2019  02:41
主  讲  人  : 嵇庆春        教授

活动时间: 04月08日16时30分       

地            点  : 理科群1号楼D-204室

讲座内容:

报告给出了Dirac型算子的带权估计,并用来研究特征值下界。在复流形上,我们进一步讨论如何用Dolbeault -Dirac算子的分次结构来得到更精致的估计。最后我们会分析这些结果与伪全纯曲线的关系。

主讲人介绍:

嵇庆春,复旦大学教授、博士研究生导师,研究方向是多复变函数论,近几年主要从事(伪)全纯曲线的分布问题与横截性问题的研究工作。2014到2016获国家基金委的优秀青年基金资助。获2018年国际华人数学家大会(International Congress ofChinese Mathematicians)最佳论文奖。

发布时间:2019-04-03 16:41:46